Hi there! Lets see!
- m is mass, and its units are kg
- k is the elastic constant measured in newtons per meter (N/m), or kilograms per second squared kg/s²
Therefore:
![\sqrt{\dfrac{m}{k}} =\sqrt{\dfrac{[kg]}{[\dfrac{kg}{s^2}]}} =\sqrt{\dfrac{[kg]}{[kg]}\cdot s^2} = \sqrt{[s]^2} = s](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cdfrac%7Bm%7D%7Bk%7D%7D%20%3D%5Csqrt%7B%5Cdfrac%7B%5Bkg%5D%7D%7B%5B%5Cdfrac%7Bkg%7D%7Bs%5E2%7D%5D%7D%7D%20%20%3D%5Csqrt%7B%5Cdfrac%7B%5Bkg%5D%7D%7B%5Bkg%5D%7D%5Ccdot%20s%5E2%7D%20%3D%20%5Csqrt%7B%5Bs%5D%5E2%7D%20%3D%20s)
The period is given in seconds so the formula is dimensionally correct.
As per the third law of Newton, the force exerted by the boat over the student is equal in magnitude to the force that the student exerted on the boat.
So, calculate the force on the student using the second law of Newton, Force = mass * acceleration.
Force on the student = 60 kg * 2.0 m/s^2 = 120 N.
=> horizontal force exerted by the student on the boat = 120 N
Answer: option d. 120 N. toward the back of the boat.
Of course it is toward the back because that is where the student jumped from..
Answer:
The motion of particles in any object moves randomly I think
Since displacement is a vector quantity, it depends on direction as well as magnitude.
Taking displacement towards east as positive and towards west as negative,
Total displacement = 1200 + (-760) = 440 meters.
Since distance is a scalar quantity, it depends only upon magnitude.
Total distance = 1200 + 760 = 1960 meters.
Hope this cleared your doubt, feel free to ask any questions regarding this and have a nice day ahead! :)