Answer:
the velocity of the boats after the collision is 4.36 m/s.
Explanation:
Given;
mass of fish, m₁ = 800 kg
mass of boat, m₂ = 1400 kg
initial velocity of the fish, u₁ = 12 m/s
initial velocity of the boat, u₂ = 0
let the final velocity of the fish-boat after collision = v
Apply the principle of conservation of linear momentum for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
800 x 12 + 1400 x 0 = v(800 + 1400)
9600 = 2200v
v = 9600/2200
v = 4.36 m/s
Therefore, the velocity of the boats after the collision is 4.36 m/s.
Answer: a) 42Nm b) 8.4m/s
Explanation:
Impulse is defined as object change in momentum.
Since Force = mass × acceleration
F = ma
Acceleration is the rate of change in velocity.
F = m(v-u)/t
Cross multiply
Ft = m(v-u)
Since impulse = Ft
and Ft = m(v-u)... (1)
The object change in velocity (v-u) = Ft/m from eqn 1
Going to the question;
a) Impulse = Force (F) × time(t)
Given force = 14N and time = 3seconds
Impulse = 14×3
Impulse = 42Nm
b) The object change in velocity (v-u) = Ft/m where mass = 5kg
v-u = 14×3/5
Change in velocity = 42/5 = 8.4m/s
Answer:
140 watt
Explanation:
We are given that
Force applied by student ,F=28 N
Weight pulled by students=70 N
Displacement,s=15 m
Time=3 s
We have to find the power developed by the student.
Work done=w=
Work done by the student=
Power=
Using the formula
Power=
Hence, the power developed by the students=140 watt
Answer:
Angle of ray makes with the vertical is 62.1 degree
Explanation:
As per the ray diagram we know that the angle of incidence on oil brine interface will be given as


now by Snell'a law at that interface we have

now we will have


now this is the angle of incidence for oil air interface
so now again by Snell's law we will have


