<u>Answer:</u> The chemical equation is written below.
<u>Explanation:</u>
Transmutation is defined as the process in which one chemical isotope gets converted to another chemical isotope. The number of protons or neutrons in the isotope gets changed.
The chemical equation for the reaction of curium-242 nucleus with alpha particle (helium nucleus) follows:

The product formed in the nuclear reaction are californium-245 nucleus and a neutron particle.
From the calculation, the moles of water produced is 18 moles of water.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction is one in which a substance is split up into smaller parts.
We have the reaction; 2 Cr(OH)3(aq) ------------> Cr2O3(s) + 3H2O(l)
From this reaction;
2 moles of Cr(OH)3 produced 3 moles of water
12 moles of Cr(OH)3 will produce;
12 moles * 3 moles / 2moles
= 18 moles of water
Hence, 12 moles of chromium (III) hydroxide produces 18 moles of water.
Learn more about decomposition reaction:brainly.com/question/8009068?
#SPJ1
The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/
1mole contains 22.4Lmol^-1
xmole contains 8.943
cross-multiply
x=1×8.943/22.4
x=0.40mole
there it contains 0.40moles.
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.