Answer:
1. 0.073L
2. 0.028L
3. 0.014L
Explanation:
The volume for the different solutions are obtained as shown below:
1. Mole = 0.53mol
Molarity = 7.25M
Volume =?
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.53/7.25
Volume = 0.073L
2. 0.035mol from a 1.25M
Mole = 0. 035mol
Molarity = 1.25M
Volume =?
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.035/1.25
Volume = 0.028L
3. Mole = 0.0013mol
Molarity = 0.090M
Volume =?
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.0013/0.090
Volume = 0.014L
<span>1. The number of valence electrons increases as you go from left to right across a period. This is because the number of electrons increases, so another electron will be added to the outer shell.
2. Group 6A elements will have 6 valence elecrons, while Group 2A elements only have 2, therefore Group 6A elements have more valence electrons that Group 2A elements.
3. Fluorine has a smaller atomic size than the other halogens (Cl, Br, I), so its valence electrons are nearer to its nucleus. This means that the attractive forces are stronger, so when another electron (from another atom) draws near the F atom, it is more likely that the electron will be pulled toward the nucleus and react with the F atom</span>.
Answer:
A Valence electron are the electrons in the outermost shell or energy level of an atom.
Hello!
The Chemical reaction is the following:
2F₂(g) + 2 H₂O(g) → O₂(g) + 4HF(g)
If we assume that all the gases are ideal gases,
we can describe the coefficients of this reaction as Volume rather than moles, so we can apply the following equations:

So,
2 L of Water Vapor reacts with the fluorine; and
1 L of Oxygen and
4 L of Hydrogen Fluoride are produced.
Have a nice day!