Answer:
A. The athlete isn’t doing any work because he doesn’t move the weight.
Explanation:
We must remember the definition of work, which says that work is equal to the product of mass by the distance displaced. In this case, the athlete only does work when he lifts the weight from the ground to the point where he holds the weight suspended.
So when he's holding the weight, he doesn't do any work.
Answer:
a) y= 3.5 10³ m, b) t = 64 s
Explanation:
a) For this exercise we use the vertical launch kinematics equation
Stage 1
y₁ = y₀ + v₀ t + ½ a t²
y₁ = 0 + 0 + ½ a₁ t²
Let's calculate
y₁ = ½ 16 10²
y₁ = 800 m
At the end of this stage it has a speed
v₁ = vo + a₁ t₁
v₁ = 0 + 16 10
v₁ = 160 m / s
Stage 2
y₂ = y₁ + v₁ (t-t₀) + ½ a₂ (t-t₀)²
y₂ = 800 + 150 5 + ½ 11 5²
y₂ = 1092.5 m
Speed is
v₂ = v₁ + a₂ t
v₂ = 160 + 11 5
v₂ = 215 m / s
The rocket continues to follow until the speed reaches zero (v₃ = 0)
v₃² = v₂² - 2 g y₃
0 = v₂² - 2g y₃
y₃ = v₂² / 2g
y₃ = 215²/2 9.8
y₃ = 2358.4 m
The total height is
y = y₃ + y₂
y = 2358.4 + 1092.5
y = 3450.9 m
y= 3.5 10³ m
b) Flight time is the time to go up plus the time to go down
Let's look for the time of stage 3
v₃ = v₂ - g t₃
v₃ = 0
t₃ = v₂ / g
t₃ = 215 / 9.8
t₃ = 21.94 s
The time to climb is
= t₁ + t₂ + t₃
t_{s} = 10+ 5+ 21.94
t_{s} = 36.94 s
The time to descend from the maximum height is
y = v₀ t - ½ g t²
When it starts to slow down it's zero
y = - ½ g t_{b}²
t_{b} = √-2y / g
t_{b} = √(- 2 (-3450.9) /9.8)
t_{b} = 26.54 s
Flight time is the rise time plus the descent date
t = t_{s} + t_{b}
t = 36.94 + 26.54
t =63.84 s
t = 64 s
Answer: Cell's nucleus
Explanation :
The full form of DNA is Deoxyribonucleic acid. The genetic information of a cell is organized in the DNA. It is inherited from parents by their children.
DNA is coiled into chromosomes in a cell's nucleus. It has a shape like a double helix. It is twisted in the form of spirals.
Hence, DNA is coiled into chromosomes in a cell's Nucleus.
Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:

where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:






Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

So, for our vectors:


To find the magnitude of this vector, we can use the Pythagorean Theorem



And this is the magnitude we are looking for.
Answer:
J
Explanation:
The daughter moves with greater acceleration backwards because of her weight.