Answer:
A = Molarity = 0.22 M
B = Molarity = 0.36 M
Explanation:
Given data:
For first solution:
number of moles = 0.550 mol
Volume of solution = 2.50 L
Molarity = ?
Molarity:
Formula:
Molarity = number of moles of solute / volume of solution in L.
Molarity = 0.550 mol / 2.50 L
Molarity = 0.22 M
For second solution:
Mass of NaCl = 15.7 g
Volume of solution = 709 mL or 709/1000 = 0.709 L
Molarity = ?
Solution:
Number of moles = mass / molar mass
Number of moles = 14.7 g/ 58.44 g/mol
Number of moles = 0.252 mol
Molarity:
Molarity = number of moles of solute / volume of solution in L.
Molarity = 0.252 mol / 0.709 L
Molarity = 0.36 M
Answer:
A) Iris
Explanation:
The Iris controls the diameter of the opening in your eye, thus also controlling the amount of light let inside. It's also reponsible for the colour of you eye.
Answer: 9.53 *2= 19.06
Explanation:
The law of multiple proportions states that if two elements combines to form more than one compound the ratio of masses of the second element which combines to the fixed mass of the first element will always be the ratios of the small whole numbers.
in case of carbon monoxide, mass of carbon will be the same of mass of oxygen.
But in case of carbon dioxide, if carbon is 9.53 units then oxygen will be twice as that of carbon.
CO2, so 9.53*2= 19.06 grams of oxygen will combine with 9.53 grams of carbon to form carbon dioxide.
Answer:
An alkali metal present in period 2 have larger first ionization energy.
Explanation:
Ionization energy:
The amount of energy required to remove the electron from the atom is called ionization energy.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus. Thus alkali metal present in period 2 have larger ionization energy because of more nuclear attraction as compared to the alkali metal present in period 4.
Answer:
The result of the atomic theory was atomic theory proposed that all matter was composed of atoms, also postulated that chemical reactions resulted in the rearrangement of the reacting atoms.