<h2>Input =

, water and Output =

</h2>
Explanation:
The light reactions of photosynthesis use water and produce Oxygen, NADPH.
The equation for photosynthesis :
→ 
The process of photosynthesis in two stages -
- The first stage is called the light reaction in which the light energy from the sun is captured and converted into chemical energy stored in the form of ATP and NADPH
- The second stage is the process of conversion of ATP molecules to sugar or glucose (the Calvin Cycle)
For a light reaction -
Net Input is of,
, 
Net Output is of, 
Answer:
Wereare they answer choices
Explanation:
Answer:
Explanation:
lung air ways the mucus will clog it up causing asthma hope this helped :P
<h3><u>Full Question:</u></h3>
The following compound has been found effective in treating pain and inflammation (J. Med. Chem. 2007, 4222). Which sequence correctly ranks each carbonyl group in order of increasing reactivity toward nucleophilic addition?
A) 1 < 2 < 3
B) 2 < 3 < 1
C) 3 < 1 < 2
D) 1 < 3 < 2
<h3><u>Answer: </u></h3>
The rate of nucleophilic attack of carbonyl compounds is 2<3 <1.
Option B
<h3><u>Explanation. </u></h3>
Nucleophilic attack is explained as the attack of an electron rich radical to a carbonyl compound like aldehyde or a ketone. A nucleophile has a high electron density, so it searches for a electropositive atom where it can donate a portion of its electron density and become stable.
A carbonyl compound is a
hybridized carbon atom with a double bonded oxygen atom in it. The oxygen atom pulls a huge portion of electron density from carbon being very electropositive.
In a ketone, there are two factors that make it less likely to undergo a nucleophilic attack than aldehyde. Firstly, the steric hindrance of two carbon groups being attached with the carbonyl carbon makes it harder for the nucleophile to approach. Secondly, the electron push by the carbon groups attached makes the carbonyl carbon a bit less electropositive than the aldehyde one. So aldehydes are more reactive towards a nucleophilic addition reaction.
<u>Answer</u>: Light
<em>Computer is an example of light energy which is the third option out of the given four choices.
</em>
<u>Explanation:</u>
We know how a computer works it takes in <em>the electrical energy</em> and does a <em>lot of mathematical mechanical work</em> and for giving answers. It uses a screen on which light blinks in pattern such that it represents letters or mathematical numbers or expressions.
Hence by using this statement we can say <em>computer converts electrical energy into light energy.
</em>