The molar mass of carbon (C) is 12.0107 u.
Water is the only common substance that when you freeze it, it's volume INCREASES.
When the pipe originally held the "all full" volume and the the water expanded, it put a tremendous amount of pressure on the pipe. Enough pressure and the pipe would burst.
Answer:
1. The gas law used: Dalton's law of partial pressure.
2. Pressure of nitrogen = 331 mmHg
Explanation:
From the question given above, the following data were obtained:
Total pressure (Pₜ) = 592 mmHg
Pressure of Oxygen (Pₒ) = 261 mmHg
Pressure of nitrogen (Pₙ) =?
The pressure of nitrogen in the sample can be obtained by using the Dalton's law of partial pressure. This is illustrated below:
Pₜ = Pₒ + Pₙ
592 = 261 + Pₙ
Collect like terms
592 – 261 = Pₙ
331 = Pₙ
Pₙ = 331 mmHg
Therefore, the pressure of nitrogen in the sample is 331 mmHg
Answer
im not quite sure but I think the answer is <em>D atom</em><em> </em>
Explaination
Make sure there are the same number of atoms of each element on either side.
1) Check each one.
2) If one's out of balance, alter the equation to balance it and go back to 1)
3) When everything's balanced, you're finished!
We have 1 Na on the left and 2 Na on the right here. We'll need another NaOH to balance it:
2 NaOH + H₂SO₄ > Na₂SO₄ + H₂O
Now O is out of balance. There's 6 on the left and 5 on the right. We'll need more H₂O:
2 NaOH + H₂SO₄ > Na₂SO₄ + 2 H₂O
Fortunately H is in balance. S is also in balance here, so looks like we did it!
Need any more help?