Answer:The mole ratio is A:B:A+B
Explanation:when substance reacts according to John Dalton's theory,their combining ratio is often a replica of the combining moles of the reactants and that of the products. So when Amoles of X combines withB moles of Y ,they produce A+B moles of XY to get a balance reaction e.g if 1moles of X2 reacts with 1moles of Y2 to form XY
The balance equation is seen as
X2+Y2_____2XY
Answer:
42.2 moles of H3PO4
Explanation:
The equation of the reaction is:
P2O5(s) + 3 H2O(l) ⟶ 2 H3PO4.
First we must obtain the number of moles of P2O5 from
Number of moles of P2O5= reacting mass of P2O5/molar mass of P2O5
Molar mass of P2O5= 141.9445 g/mol
Number of moles= 3000g/141.9445 g/mol = 21.1 moles of P2O5
From the reaction equation;
1 mole of P2O5 yields 2 moles of H3PO4
21.1 moles of P2O5 will yield 21.1 ×2/ 1 = 42.2 moles of H3PO4
39.25 g of water (H₂O)
Explanation:
We have the following chemical reaction:
2 H₂ + O₂ → 2 H₂O
Now we calculate the number of moles of each reactant:
number of moles = mass / molar weight
number of moles of H₂ = 14.8 / 2 = 7.4 moles
number of moles of O₂ = 34.8 / 32 = 1.09 moles
We see from the chemical reaction that 2 moles of H₂ will react with 1 mole of O₂ so 7.4 moles of H₂ will react with 3.7 moles of O₂ but we only have 1.09 moles of O₂ available. The O₂ will be the limiting reactant. Knowing this we devise the following reasoning:
if 1 moles of O₂ produces 2 moles of H₂O
then 1.09 moles of O₂ produces X moles of H₂O
X = (1.09 × 2) / 1 = 2.18 moles of H₂O
mass = number of moles × molar weight
mass of H₂O = 2.18 × 18 = 39.25 g
Learn more about:
limiting reactant
brainly.com/question/7144022
brainly.com/question/6820284
#learnwithBrainly
Answer:
255.51cm3
Explanation:
Data obtained from the question include:
V1 (initial volume) =?
T1 (initial temperature) = 50°C = 50 + 273 = 323K
T2 (final temperature) = - 5°C = - 5 + 237 = 268K
V2 (final volume) = 212cm3
Using the Charles' law equation V1/T1 = V2/T2, the initial volume of the gas can be obtained as follow:
V1/T1 = V2/T2
V1/323 = 212/268
Cross multiply to express in linear form
V1 x 268 = 323 x 212
Divide both side by 268
V1 = (323 x 212)/268
V1 = 255.51cm3
Therefore, the initial volume of the gas is 255.51cm3