The Kinetic<span> Molecular </span>Theory<span> explains the forces between </span>molecules<span> and the energy that </span>they<span> possess.
</span>
Answer: Rn :)))) no explanation needed
According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
<h2>

(1)
</h2>
Where;
is the Gravitational Constant and its value is 
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>

(2)
</h2>
Then:
<h2>

(3)
</h2>
Which is the same as:
<h2>

</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h
Answer
1.0/5
4
IlaMends
Ambitious
2.1K answers
12.9M people helped
Explanation:
When pH of the solution is 11.
..(1)
At pH = 11, the concentration of ions is .
When the pH of the solution is 6.
..(2)
At pH = 6, the concentration of ions is .
On dividing (1) by (2).
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is .
Difference between the ions at both pH:
This means that Hydrogen ions in a solution at pH = 7 has ions fewer than in a solution at a pH = 6
Thermal energy is the force of the kinetic and potential energies of all particles in an object