<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
Explanation:
The formula to determine the size of a capillary tube is
h = 2•T•Cos θ / r•ρ•g
Where
h = height of liquid level
T = surface tension
r = radius of capillary tube
ρ = density of liquid
θ = angle of contact = 0°
g =acceleration due to gravity=9.81m/s²
The liquid is water then,
ρ = 1000 kg / m³
Given that,
T = 0.0735 N/m
h = 0.25mm = 0.25 × 10^-3m
Then,
r = 2•T•Cos θ / h•ρ•g
r = 2 × 0.0735 × Cos0 / 2.5 × 10^-3 × 1000 × 9.81
r = 5.99 × 10^-3m
Then, r ≈ 6mm
The radius of the capillary tube is 6mm
So, the minimum size is
Volume = πr²h
Volume = π × 6² × 0.25
V = 2.83 mm³
The minimum size of the capillary tube is 2.83mm³
Answer: hello your question lacks the required diagram attached below is the required diagram
answer : Both cars will move backwards and stop due to friction.
Explanation:
Given that both cars are negatively charged, When the wedges are removed both cars will move backwards ( repelling each other ) because they are like poles, and Like poles repel each other. while unlike poles attract each other ( forward movement ) .
The cars will later come to a stop due to frictional forces between the cars and the surface.
Explanation:
F =(frac{1}{4{pi}{varepsilon}_o}) x (frac {q_1q_2}{r^2})
F =(frac {5 {times} 10 {times} 8 {times} 10}{0.002 {times} 0.002}) x 9 x 10
F = 900N
Answer:
J. Robert Oppenheimer
Explanation:
He led the Manhattan project and created the first nuclear bomb in WWII