Answer:
13.6 cm
Explanation:
From Snell's law:
n₁ sin θ₁ = n₂ sin θ₂
In the air, n₁ = 1, and light from the horizon forms a 90° angle with the vertical, so sin θ₁ = sin 90° = 1.
Given n₂ = 4/3:
1 = 4/3 sin θ
sin θ = 3/4
If x is the radius of the circle, then sin θ is:
sin θ = x / √(x² + 12²)
sin θ = x / √(x² + 144)
Substituting:
3/4 = x / √(x² + 144)
9/16 = x² / (x² + 144)
9/16 x² + 81 = x²
81 = 7/16 x²
x ≈ 13.6
Meteorite meteoroid asteroid moon give brainlest please
Answer:
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference
Explanation:
For this exercise let's use the electric field expression
E = k q / r²
where k is the Coulomb constant that is equal to 9 109 N m² /C², q the charge and r the distance to the point of interest positive test charge, in this case the distance to the bee
let's calculate the field for each charge
Q = 24 pC = 24 10⁻¹² C
E₁ = 9 10⁹ 24 10⁻¹² / 0.20²
E₁ = 5.4 N / C
Q = 32 pC = 32 10⁻¹² C
E₂ = 9 10⁹ 32 10⁻¹² / 0.2²
E₂ = 7.2 N / C
let's find the difference between these two fields
ΔE = E₂ -E₁
ΔE = 7.2 - 5.4
ΔE = 1.8 N / C
the minimum detection field is
E_minimum = 0.77 N / C
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference
Answer:
a) 



b) 
Explanation:
From the exercise we got the ball's equation of position:

a) To find the average velocity at the given time we need to use the following formula:

Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001



--


--


--


b) To find the instantaneous velocity we need to derivate the equation

