Answer:
The combination, L = I / (m * R) , that appears in the equation for the period of a physical pendulum, is called radius of oscillations
Hope this helps :]
Answer:
Particles in a: gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
i hope this helps your answer
The beats are actually two new sounds.
Their frequencies are (the sum of the original two frequencies) and (the difference of the original two frequencies).
The existence of the beats is the result of the difference in the frequencies of the original two sounds. <em> (b)</em>
Answer:
16.8ohms
Explanation:
According to ohm's law which states that the current passing through a metallic conductor at constant temperature is directly proportional to the potential difference across its ends.
Mathematically, V = IRt where;
V is the voltage across the circuit
I is the current
R is the effective resistance
For a series connected circuit, same current but different voltage flows through the resistors.
If the initial current in a circuit is 19.3A,
V = 19.3R... (1)
When additional resistance of 7.4-Ω is added and current drops to 13.4A, our voltage in the circuit becomes;
V = 13.4(7.4+R)... (2)
Note that the initial resistance is added to the additional resistance because they are connected in series.
Equating the two value of the voltages i.e equation 1 and 2 to get the resistance in the original circuit we will have;
19.3R = 13.4(7.4+R)
19.3R = 99.16+13.4R
19.3R-13.4R = 99.16
5.9R = 99.16
R= 99.16/5.9
R = 16.8ohms
The resistance in the original circuit will be 16.8ohms
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force,

. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:

Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:

Now we can use the following relationship to find the distance covered by the skier before stopping, S:

where

is the final speed of the skier and

is the initial speed. Substituting numbers, we find: