Answer:
Explanation:
Given that,
Force is downward I.e negative y-axis
F = -2 × 10^-14 •j N
Magnetic field is westward, +x direction
B = 8.3 × 10^-2 •i T
Charge of an electron
q = 1.6 × 10^-19C
Velocity and it direction?
Force in a magnetic field is given as
F = q(V×B)
Angle between V and B is 270, check attachment
The cross product of velocity and magnetic field
F =qVB•Sin270
2 × 10^-14 = 1.6 × 10^-19 × V × 8.3 × 10^-2
Then,
v = 2 × 10^-14 / (1.6 × 10^-19 × 8.3 × 10^-2)
v = 1.51 × 10^6 m/s
Direction of the force
Let x be the direction of v
-F•j = v•x × B•i
From cross product
We know that
i×j = k, j×i = -k
j×k =i, k×j = -i
k×i = j, i×k = -j OR -k×i = -j
Comparing -k×i = -j to given problem
We notice that
-F•j = q ( -V•k × B×i)
So, the direction of V is negative z- direction
V = -1.51 × 10^6 •k m/s
The answer would be letter choice B
I think the correct answer from the choices listed above is option D. The model of the universe that suggests that the sun is the center of the universe was first brought by Copernicus. His model is known as the "Sun centered model".
The correct answer for the question that is being presented above is this one: "B. 13m."
The formula of wave velocity is this:
wave velocity = f * <span>λ
</span>λ = v / f
<span>λ</span> = 343m/s / 26Hz
λ = 13.20m .. ans (b)
Here are the following choices:
A. 5m
B. 13m
C. 28m
D. 58m
Answer:
0.0768 revolutions per day
Explanation:
R = Radius
= Angular velocity
As the mass is conserved the angular momentum is conserved

Moment of intertia for solid sphere

Moment of intertia for hollow sphere

Dividing the moment of inertia

From the first equation

The angular velocity, in revolutions per day, of the expanding supernova shell is 0.0768 revolutions per day