Given what we know, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
<h3>Why does it take this much energy to boil the water?</h3>
We arrive at this number by taking into account the energy needed to boil 1g of water to its vaporization point. This results in the use of 2260 J of heat energy. We then take this number and multiply it by the total grams of water being heated, in this case, 5.05g, which gives us our answer of 11.4 kJ of energy required.
Therefore, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
To learn more about the behavior of water visit:
brainly.com/question/1416592?referrer=searchResults
Explanation:
Br2 + S2O32- + 5H2O –> 2Br- + 2SO4 + 10H+ + 6e
The balanced equation
for the reaction is
CO(g) + 2H₂(g) ⇄ CH₃OH(g)
The given
concentrations are at equilibrium state. Hence we can use them directly in
calculation with the expression for the equilibrium constant, k.
expression for k can be written as
k = [CH₃OH(g)] / [CO(g)] [H₂<span>(g) ]²
</span>[H₂<span>]=0.072 M
[CO]= 0.020M
[CH</span>₃OH]= 0.030 M
From substitution,
k = 0.030
M / 0.020 M x (0.072 M)²
k =
289.35 M⁻²
<span>
Hence, equilibrium constant for the given reaction at 700 K is 289.35 M</span>⁻².
<span> </span>
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.
Answer:
6,480 kilometers
Explanation:
1 day = 86,400 seconds
1 kilometer = 100,000 centimeters
Equation:
86,400 x 7,500 = 648,000,000
648,000,000 ÷ 100,000 = 6,480
Hope this helped : )