Answer:

Explanation:
The vertical component of the initial velocities are

If we ignore air resistance, and let g = -9.81 m/s2. The the time it takes for the projectiles to travel, vertically speaking, can be calculated in the following motion equation




So the ratio of the times of the flights is

If these were the missing choices:
a)
Consumers fill out questionnaires concerning
their need for new products.
b)
Consumers vote for politicians who decide which
kind of research to support
c)
Consumers decide what to buy and what not to buy
d)
Consumers influence the decisions of private
foundations by deciding where to donate money.
My answer would be: c) <span>Consumers decide what to buy and what not to buy</span>
Every growth is based on the demand of the people. If a good or service is needed then its demand will increase. If a good or service is not needed then its demand will decrease until such time that said good or service will be eliminated.
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s
Answer:
s=800 m
Explanation:
Given that,
Acceleration of a runner, a = 4 m/s²
Time, t = 20 seconds
We need to find the distance covered by her. Initially, she was at rest. It means its initial velocity is equal to 0. So, using second equation of motion as follows :

Herre, u = 0

So, she will cover a distance of 800 m.
Answer:
0.5 m/s².
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
a = (v – u) / t
a = (10 – 0) / 20
a = 10/20
a = 0.5 m/s²
Therefore, the acceleration of the car is 0.5 m/s².