Answer:
Explanation:
Because we assume the pendulum is a "mathematical pendulum" (neglecting the moment of inertia of the bob), we can find:

By using the 
The mean position is the position when <em>y</em> = 0, so:
rad/s
and
in centimeters (cm).
Answer:
I believe its B and C
Explanation:
<u><em>If I'm wrong please tell me so I can correct my answer.</em></u>
<u><em /></u>
(1 cal/g °C) x (4000 g) x (45 - 25)°C = 80000 cal = 80 kcal. So the answer is 80 kcal .
Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
Answer:
The combined gas equation relates three variables pressure, temperature and volume when the number of moles is constant.
The equation is PV / T = constant. Which is valid for a fixed number of moles of the gas.
You can derive the combined gas equation from the combination of Bolye's law, Charles' law and Gay-Lussac's law, which needs some algebra.
Explanation: