Answer:
B. Smaller than the acceleration of the bullet.
Explanation:
According to the law of conservation of momentum; the total momentum of the gun and bullet after firing is equal to the total momentum of the gun and bullet before firing.
However, the mass of gun is much larger than that of the bullet hence it follows that the velocity and acceleration during the recoil of the rifle is much smaller in comparison to the velocity and acceleration of the of bullet.
So; the acceleration of the rifle is given by the force exerted on the rife by the bullet divided by the mass of the rifle. Given that the mass of the rifle is much greater than the mass of the bullet, the acceleration of the rifle is much less than that of the bullet.
I can’t see the picture what do you need help with
Answer:
The maximum distance the person will reach before he slip is 1.82m.
Not even close to the middle of the ladder.
Explanation:
Check attachment for solution
Conservation of momentum requires that the sum of momenta after is equal to that before. Since initially nothing is moving, the sum after the shot will also add to zero.
m₁v₁ = -m₂v₂
Solve for the cannon's velocity v₁
v₁ = -m₂v₂/m₁ = -2.10m/s
The negative sign means it's moving 2.10m/s south.
Answer:
6.0 s
98 m/s
Explanation:
The radius of the planet is much bigger than the height of the tower, so we will assume the acceleration is constant. Neglect air resistance.
Acceleration due to gravity on this planet is:
a = GM / r²
a = (6.67×10⁻¹¹ m³/kg/s²) (2.7 × 1.48×10²³ kg) / (1.7 × 750,000 m)²
a = 16.4 m/s²
The height of the tower is:
Δy = 96 × 3.05 m
Δy = 293 m
Given v₀ = 0 m/s, find t and v.
Δy = v₀ t + ½ at²
(293 m) = (0 m/s) t + ½ (16.4 m/s²) t²
t = 6.0 s
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (16.4 m/s²) (293 m)
v = 98 m/s