Given Information:
slope angle = θ = 30°
spring constant = k = 30 N/m
compressed length = x = 10 cm = 0.10 m
mass of ice cube = m = 63 g = 0.063 kg
Required Information:
distance traveled by ice cube = d = ?
Answer:
distance traveled by ice cube = 0.48 m
Explanation:
Using the the principle of conversation of energy, the following relation holds true for this case,
mgh = 1/2*kx²
h = 1/2*kx²/mg
Where h is the height of the slope, m is the mass of ice cube, k is the spring constant and x is the compressed length o the spring and g is gravitational acceleration.
h = 1/2*kx²/mg
h = 1/2*30(0.1)²/0.063*9.8
h = 0.242 m
From trigonometry ratio,
sinθ = h/d
d = h/sinθ
d = 0.242/sin(30)
d = 0.48 m
Therefore, when the ice cube is released, it will travel a total distance 0.48 up the slope before reversing direction.
Answer:
Explanation:
a) The magnitude of the net force on the student = 0 N since the student is standing still on level ground and upward reaction force = downward force.
b) the magnitude of the contact force on the student by the backpack = 80 N since the student was backing the backpack
c) the magnitude of the contact force o the student by the ground = 550 N + 80 N = 630 N reactional force on the student
you haven't attached the diagram, but i assume that this diagram is what you were talking about
Answer:
near Y
Explanation:
the electric field lines goes from a positive charge to a negative charge. This means that a positive charge would move in the same direction of the field lines, while a negative charge would move in the opposite direction of the field lines. the field lines are created from +vely charged plate to -vely charged plate so the negative charged particles moves towards the lower plate which is positively charged, and opposite to the direction of field lines.
Both F's are forces, so µ must be unitless/dimensionless.
F[friction] = µ F[normal]
Or, more explicitly in terms of the units:
(Newtons) = (constant) (Newtons)