Answer:
c. 2 m/s
Explanation:
The relationship between speed, frequency and wavelength of a wave is given by:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the transverse wave in this problem, we have:
is the frequency
is the wavelength
Substituting these numbers into the equation, we find the speed of the wave:

<span>h ( t) = h(1 sec) = -16t^2 + 541
so h (2 sec) = -16*(2)^2 + 541 = -64 + 541 = <span>477 ft
Therefore, </span></span>the height of the rock after 2 seconds is 477 feet.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
Answer is C.
Optical microscope involves passing visible light transmitted through or reflected from the sample through a single or multiple lenses to allow a magnified view of the sample.
By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4
The crowbar is placed under a small edge under the top of the box. The crowbar will send the box lid flying from the opposite direction that the crowbar is placed. Please give Brainlest if you understand.