<h2>Answer: The more precisely you know the position of a particle, the less well you can know the momentum of the particle
</h2>
The Heisenberg uncertainty principle was enunciated in 1927. It postulates that the fact that each particle has a wave associated with it, imposes restrictions on the ability to determine <u>its position and speed at the same time. </u>
In other words:
<em>It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle.</em>
<h2>So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity. </h2><h2 />
In fact, even with the most precise devices, the uncertainty in the measurement continues to exist. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Therefore the correct option is C.
Answer:
C.
Explanation:
Fahrenheit scale is a temperature scale that measures the boiling point of water at 212 degrees F and the freezing point at 32 degrees F. The Fahrenheit scale was developed by the German scientist Daniel Gabriel Fahrenheit in 1724.
In the given scenario, the scientist, who wishes to measure the temperature of her experiment which will expectantly be colder than the point of water, should use the Fahrenheit scale.
So, the correct answer is option C.
Answer:
E1 = 10.15 * 10^4 N/C
E2 = 0
E3 = 10.15 *10^4 N/C
Explanation:
Given data:
Two 13 cm-long thin glass rods ( L ) = 0.13 m
charge (Q) = +11nC
distance between thin glass rods = 4 cm .
<u>Calculate the electric field strengths </u>
electric charge due to a single glass rod in the question ( E ) = 
equation 1 can be used to determine E1, E2 and E3 because the points lie within the two rods hence the net electric field produced will be equal to the difference in electric fields produced
applying equation 1 to determine E1
E1 =
( distance from 1 rod is 0.01 m and from the other rod is 0.03 )
= 
= 10.15 * 10^4 N/C
applying equation 1 to determine E2
E2 = 

therefore E2 = 0
E1 = E3
hence E3 = 10.15*10^4 N/C
Answer:
When Magenta light is shown on a green surface, it looks black.
Explanation:
It absorbs the Magenta light and also reflects none of the light.
Answer:
A. 2.2*10^-2m
Explanation:
Using
Area = length x L/ uo xN²
So A = 0.7m * 25 x 10^-3H /( 4π x10^-7*
3000²)
A = 17.5*10^-3/ 1.13*10^-5
= 15.5*10^-2m²
Area= π r ²
15.5E-2/3.142 = r²
2.2*10^2m
Explanation: