Answer:
0.07°C
Explanation:
<u>solution:</u>
the speed of a sound in water is<u>:</u>
v(T)=1480+4(T-4°C)
<u>at 4°C the travel time is:</u>
t(4◦C) = (
7600 × 103 m
)
/ (1480 m/s) = 5202.7 s
<u>5°C, the travel time is:</u>
t(5◦C) = (
7600 × 103 m
)
/ (1484 m/s) = 5188.7 s
<u>one degree C corresponds to a ∆t of 14 s so temperature difference is:</u>
ΔT=1 s/14 s=0.07◦C
Answer:c
Explanation:
Given
object is falling Freely with an odometer
Suppose it falls with zero initial velocity
so distance fallen in time t is given by

here u=0 and t=time taken

for 

for 

distance traveled in 2 nd sec
for 

distance traveled in 3 rd sec
so we can see that distance traveled in each successive second is increasing
Answer
Hi,
An increase in amplitude from 3m to 6 m increases the energy it transports. The frequency of the wave is not affected
Explanation
Amplitude is the height of a wave where as frequency is the number of waves that pass by each second. A wave with bigger amplitude has more energy than a wave with smaller amplitude. A point where more waves pass contains more energy that is transferred every second. The change in the amplitude of a wave does not change its frequency. However, frequency is inversely related to the wavelength of a wave.
Best Wishes!
Refer to the figure shown below.
The velocity of the child and the velocity of the ship should be added vectorially to find the speed and direction of the child relative to the water surface.
The magnitude of the child's velocity is
v = √(2² + 18²) = 18.11 mph
The direction of the child's speed is
θ = tan⁻¹ (18/2) = tan⁻¹ 9 = 83.7° north of east or counterclockwise from the eastern direction.
Answer:
The magnitude is 18.1 mph.
The direction is 84° north of east.