Answer:
Option (a)
Explanation:
We will discard options that don't fit the situation:
Option b: <em>Incorrect </em>since if the driver "hits the gas" then velocity is augmenting and it's not constant.
Option c and d: <em>Incorrect </em>since the situation doesn't give us any information that could be related directly to the terrain or movement direction.
Option a: Correct. At <em>stage 1</em> we can assume the driver was going at constant speed which means acceleration is constantly zero. At <em>stage 2 </em>we can assume the driver augmented speed linearly, this is, with constant positive acceleration. At <em>stage 3 </em>we can assume the driver slowed the speed linearly, with constant negative acceleration.
<span>The conversion for Kelvin from Celsius is simple since the units change at same rate (degree for degree) but haven't different zero reference. The Kelvin scale represents absolute zero. The celcius scale moves degree per degree with kelvin scale but has a zero based on freezing point of water. The conversion is 273 + (temperature in celcius) = temperature on kelvin scale. Note 273 is a rounded number to nearest whole number. The actual figure is a number with decimal. 273.15 can also be used if you want more significant figures.
so 273 + 78C = 351 K </span>
Answer:
The current through the wire is equal to 0.8 A.
Explanation:
Given that,
The length of a copper wire = 2 m
Potential difference = 24 mV
The current through the wire is 0.40 A.
The new potential difference is 48 mV.
We need to find the current through the wire.
As the potential difference is doubled for second wire. So the new current will be :
I' = 2I
= 2 × 0.4
= 0.80 A
So, the current through the wire is equal to 0.8 A.