The decomposition of ammonia is characterized by the following decomposition equation:
2NH₃<span> → N</span>₂ <span> + 3H</span>₂
The mole ratio of N₂ : H₂ is 1 : 3
If the number of moles of N₂ = 0.0351 mol
Then the number of moles of H₂ = 0.0351 mol × 3
= 0.1053 mol
The number of moles of hydrogen gas produced when 0.0351 mol of Nitrogen gas is produced after the decomposition of Ammonia is 0.105 mol (OPTION 3).
Answer:
Final Volume = 5.18 Liters
Explanation:
Initial Condition:
P1 = 789 mm Hg x (1/760) atm /mm Hg = 1.038 atm
T1 = 22° C = 273 + 22 = 295 K
V1 = 4.7 L
Final Condition:
P2 = 755 mm Hg x (1/760) atm /mm Hg = 0.99 atm
T2 = 37° C = 273 + 37 = 310 K
V2 = ?
Since, (P1 x V1) / T1 = (P2 x V2) / T2,
Therefore,
⇒ (1.038)(4.7) / 295 = (0.99)(V2) / 310
⇒ V2 = 5.18 L (Final Volume)
Answer:
Longer hydrocarbon molecules have a stronger intermolecular force. More energy is needed to move them apart so they have higher boiling points . This makes them less volatile and therefore less flammable
Answer:
A is the answer; 'more-efficient extraction techniques
Explanation:
I just took the test and got it right :D
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!