Answer:
<h3>The answer is 7.85 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

volume = final volume of water - initial volume of water
volume = 13.91 - 12 = 1.91 mL
We have

We have the final answer as
<h3>7.85 g/mL</h3>
Hope this helps you
Answer:
-255.4 kJ
Explanation:
The free energy of a reversible reaction can be calculated by:
ΔG = (ΔG° + RTlnQ)*n
Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.
C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)
Q = pC₂H₆/[pC₂H₂ * (pH₂)²]
Q = 0.261/[8.58*(3.06)²]
Q = 3.2487x10⁻³
ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)
ΔG = -255.4 kJ
60 g C2H6 × 1 mol C2H6 x 7 mol O2 x 32 g O2 = ~223.5 g O2
30.068 g 2 mol C2H6 1 mol O2
Answer:
10.85 g of water
Explanation:
First we write the balanced chemical equation

Then we calculate the number of moles of nitric acid produced
n(HNO3) = 
According to the balanced equation, water needed in moles is always half the number of moles of HNO3 produced. So since we will produce 1.2044 mol of HNO3, we will need 0.6022 mol of water. Now to calculate what mass that is:
mass(water)=number of moles*molar mass=0.6022mol*18.02g/mol=10.85g