You need to find moles of the gas, so you would use the ideal gas law:
PV=nRT
Pressure
Volume
n=moles
R= gas constant
Tenperature in Kelvin
n= PV/RT
(1.00atm)(1.35L)/(.08206)(332K) = 0.050mol
Molar mass is grams per mole, so
(3.75g/.050mol) = 75g/mol
Answer:
The direction will be changed
.
Explanation:
According to the principles of motion, if an object is moving with solitary velocity and if an external force is applied to it, then that force changes the position, speed, and direction of that object.
In the given question, an external force is being applied to the toy which will change the direction of that toy.
Answer:
False. They can be both omnivores and carnivores.
Stoichiomety:
1 moles of C + 1 mol of O2 = 1 mol of CO2
multiply each # of moles times the atomic molar mass of the compund to find the relation is weights
Atomic or molar weights:
C: 12 g/mol
O2: 2 * 16 g/mol = 32 g/mol
CO2 = 12 g/mol + 2* 16 g/mol = 44 g/mol
Stoichiometry:
12 g of C react with 32 g of O2 to produce 44 g of CO2
Then 18 g of C will react with: 18 * 32/ 12 g of Oxygen = 48 g of Oxygen
And the result will be 12 g of C + 48 g of O2 = 60 g of CO2.
You cannot obtain 72 g of CO2 from 18 g of C.
May be they just pretended that you use the law of consrvation of mass and say that you need 72 g - 18g = 54 g. But it violates the proportion of C and O2 in the CO2 and is not possible.
Answer:
A) in response to an increase in the cytoplasmic Ca2+concentration.
Explanation:
Muscle contraction occurs in response to an increase in the cytoplasmic Ca2 + concentration.
This process occurs with the shortening of the sarcomeres resulting in a result, the actin filaments react with myosin, generating actomyosin. During this reaction, it is necessary to increase the cytoplasmic concentration of Ca + and ATP. In this, myosin will break down ATP, releasing energy so that the muscle can contract.