1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
3 years ago
12

New ventures that are based on strategic value, such as valuable technology, are attractive while those with low or no strategic

value are
less attractive.
Select one:
O a. False
O b. True​
Engineering
2 answers:
Ksju [112]3 years ago
8 0
The answer is false I believe
Alecsey [184]3 years ago
7 0

Answer:

false

Explanation:

i hope answer is right

You might be interested in
PLS HELP ME
Oksana_A [137]

Answer:

The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.

Explanation:

160 - 120 = 40

120 = 100

40 = X

40 x 100 / 120 = X

4000 / 120 = X

33.333 = X

120 = 100

160 = X

160 x 100 /120 = X

16000 / 120 = X

133.333 = X

4 0
3 years ago
An inductor has a 50.0-Ω reactance when connected to a 60.0-Hz source. The inductor is removed and then connected to a 45.0-Hz s
nignag [31]

Given:

X_{L} = 50.0 \ohm

frequency, f = 60.0 Hz

frequency, f' = 45.0 Hz

V_rms} = 85.0 V

Solution:

To calculate max current in inductor, I_{L(max):

At f = 60.0 Hz

X_{L} = 2\pi fL

50.0 = 2\pi\times 60.0\times L

L = 0.1326 H

Now, reactance X_{L} at f' = 45.0 Hz:

X'_{L} = 2\pi f'L

X'_{L} = 2\pi\times 45.0\times 0.13263 = 37.5\ohm

Now, I_{L(max) is given by:

I_{L(max) = \sqrt {\frac{2V_{rms}}{X'_{L}}}

I_{L(max) = \sqrt {\frac{2\times 85.0}{37.5}} = 2.13 A

Therefore,  max current in the inductor, I_{L(max) = 2.13 A

7 0
3 years ago
For each function , sketch the Bode asymptotic magnitude and asymptotic phase plots.
horrorfan [7]

Answer:

attached below

Explanation:

a) G(s) = 1 / s( s+2)(s + 4 )

Bode asymptotic magnitude and asymptotic phase plots

attached below

b) G(s) = (s+5)/(s+2)(s+4)

phase angles = tan^-1 w/s , -tan^-1 w/s , tan^-1 w/4

attached below

c) G(s)= (s+3)(s+5)/s(s+2)(s+4)

solution attached below

5 0
3 years ago
What is the value of the work interaction in this process?
Cloud [144]

Answer:

The answer is "-121\  \frac{KJ}{Kg}".

Explanation:

Please find the correct question in the attachment file.

using formula:

\to W=-P_1V_1+P_2V_2 \\\\When \\\\\to W= \frac{P_1V_1-P_2V_2}{n-1}\ \   or \ \  \frac{RT_1 -RT_2}{n-1}\\\\

W =\frac{R(T_1 -T_2)}{n-1}\\\\

    =\frac{0.287(25 -237)}{1.5-1}\\\\=\frac{0.287(-212)}{0.5}\\\\=\frac{-60.844}{0.5}\\\\=-121.688 \frac{KJ}{Kg}\\\\=-121 \frac{KJ}{Kg}\\\\

7 0
3 years ago
1. Consider a city of 10 square kilometers. A macro cellular system design divides the city up into square cells of 1 square kil
kakasveta [241]

Answer:

a) n = 1000\,users, b)\Delta t_{min} = \frac{1}{30}\,h, \Delta t_{max} = \frac{\sqrt{2} }{30}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h, c) n = 10000000\,users, \Delta t_{min} = \frac{1}{3000}\,h, \Delta t_{max} = \frac{\sqrt{2} }{3000}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

Explanation:

a) The total number of users that can be accomodated in the system is:

n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )

n = 1000\,users

b) The length of the side of each cell is:

l = \sqrt{1\,km^{2}}

l = 1\,km

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{30}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{30}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h

c) The total number of users that can be accomodated in the system is:

n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )

n = 10000000\,users

The length of each side of the cell is:

l = \sqrt{100\,m^{2}}

l = 10\,m

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{3000}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

8 0
4 years ago
Other questions:
  • A computer has a two-level cache. Suppose that 60% of the memory references hit on the first level cache, 35% hit on the second
    12·1 answer
  • LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO
    10·1 answer
  • an adiabatic compressor receives 1.5 meter cube per second of air at 30 degrees celsius and 101 kpa. The discharge pressure is 5
    11·1 answer
  • Takt time is the rate at which a factory must produce to satisfy the customer's demand. a)- True b)- False
    11·1 answer
  • How many kg / day of NaOH must be added to neutralize a waste stream generated by an industry producing 90,800 kg / day of sulfu
    6·2 answers
  • The heat transfer rate per unit area in a thermal circuit is equivalent to what quantity in an electric circuit? A. voltage B. c
    6·1 answer
  • .If aligned and continuous carbon fibers with a diameter of 6.90 micron are embedded within an epoxy, such that the bond strengt
    11·1 answer
  • ?Why the efficiency of Class A amplifier is very poor​
    11·1 answer
  • WHICH TASK BEST FITS THE ROLE OF A DESIGN ENGINEER ?
    7·1 answer
  • Phosphorus and nitrogen are included in which category of water pollutants?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!