Answer:
The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.
Explanation:
160 - 120 = 40
120 = 100
40 = X
40 x 100 / 120 = X
4000 / 120 = X
33.333 = X
120 = 100
160 = X
160 x 100 /120 = X
16000 / 120 = X
133.333 = X
Given:

frequency, f = 60.0 Hz
frequency, f' = 45.0 Hz

Solution:
To calculate max current in inductor,
:
At f = 60.0 Hz


L = 0.1326 H
Now, reactance
at f' = 45.0 Hz:


Now,
is given by:
Therefore, max current in the inductor,
= 2.13 A
Answer:
attached below
Explanation:
a) G(s) = 1 / s( s+2)(s + 4 )
Bode asymptotic magnitude and asymptotic phase plots
attached below
b) G(s) = (s+5)/(s+2)(s+4)
phase angles = tan^-1 w/s , -tan^-1 w/s , tan^-1 w/4
attached below
c) G(s)= (s+3)(s+5)/s(s+2)(s+4)
solution attached below
Answer:
The answer is "
".
Explanation:
Please find the correct question in the attachment file.
using formula:



Answer:
a)
, b)
,
,
, c)
,
,
, 
Explanation:
a) The total number of users that can be accomodated in the system is:


b) The length of the side of each cell is:


Minimum time for traversing a cell is:



The maximum time for traversing a cell is:


The approximate time is giving by the average of minimum and maximum times:


c) The total number of users that can be accomodated in the system is:


The length of each side of the cell is:


Minimum time for traversing a cell is:



The maximum time for traversing a cell is:


The approximate time is giving by the average of minimum and maximum times:

