Please show the whole question including the diagram so that you can receive help with the question.
See the sketch attached.
<h3>Explanation</h3>
The Lewis structure of a molecule describes
- the number of bonds it has,
- the source of electrons in each bond, and
- the position of any lone pairs of electrons.
Atoms are most stable when they have eight or no electrons in their valence shell (or two, in case of hydrogen.)
- Each oxygen atom contains six valence electrons. It demands <em>two</em> extra electrons to be chemically stable.
- Each sulfur atom contains six valence electrons. It demands <em>two </em> extra electrons to be chemically stable.
- Each hydrogen atom demands <em>one</em> extra electron to be stable.
H₂O contains two hydrogen atoms and one oxygen atom. It would take an extra 2 + 2 × 1 = 4 electrons for all its three atoms are stable. Atoms in an H₂O would achieve that need by sharing electrons. It would form a total of 4 / 2 = 2 O-H bonds.
Each O-H bond contains one electron from oxygen and one from hydrogen. Hydrogen has no electron left. Oxygen has six electrons. Two of them have went to the two O-H bonds. The remaining four become 4 / 2 = 2 lone pairs. The lone pairs repel the O-H bonds. By convention, they are placed on top of the two H atoms.
Similarly, atoms in a SO₂ molecule demands an extra 2 × 2 + 2 = 6 electrons for its three atoms to become chemically stable. It would form 6 / 2 = 3 chemical bonds. Loops are unlikely in molecules without carbon. As a result, one of the two O atoms would form two bonds with the S atom while the other form only one.
Atoms are unstable with an odd number of valence electrons. The S atom in SO₂ would have become unstable if it contribute one electron to each of the three bond. It would end up with 3 × 2 + 3 = 9 valence electrons. One possible solution is that it contributes two electrons in one particular bond. One of the three bonds would be a coordinate covalent bond, with both electrons in that bond from the S atom. In some textbooks this type of bonds are also known as dative bonds.
Dots and crosses denotes the origin of electrons in a bond. Use the same symbol for electrons from the same atom. Electrons from the oxygen atoms O are shown in blue in the sketch. They don't have to be colored.
Conduction-
putting an icepack on injury
grabbing a warm coffee mug
burning yourself by touching boiling water
the handle of a pot being to hot to touch
Convection-
heat from a fire to warm hands
warm water rising to the surface of of the ocean etc.
warm air rising off pavement
an oven that cooks by cycling warm air through the bottom and out the top
Radiation-
cooking popcorn using microwave
heat from the sun hitting a solar panel
( i havent done science in a while cuz im homeschooled but i think most of these are correct)
good luck on what your working on !!
Answer:
Phosphorus trichloride, PCl₃ undergoes change in bonding and molecular force of attraction, causing it to be liquid at room temperature.
Explanation:
Unlike other chlorides of Period 3 elements, Phosphorus trichloride, PCl₃ changes the structure of its molecular bonding from ionic to covalent bonds as it transitions to fluids (liquids or gases). The PCl₃ molecule also has the weak Van der Waals dispersion and dipole-dipole attraction, making it a fuming liquid at room temperature, with no electrical conductivity.
Heat= latent heat of fusion+sensible heat+ latent heat of vapourization
=(79.7*5)+(5*100*1)+(540*5)
=3598.5 cal