Another name for a mesh screen is a sieve.
Answer:
1.76
Explanation:
There is some info missing. I think this is the original question.
<em>A chemist dissolves 660.mg of pure hydroiodic acid in enough water to make up 300.mL of solution. Calculate the pH of the solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the molarity of HI(aq)
M = mass of solute / molar mass of solute × liters of solution
M = 0.660 g / 127.91 g/mol × 0.300 L
M = 0.0172 M
Step 2: Write the acid dissociation reaction
HI(aq) ⇄ H⁺(aq) + I⁻(aq)
HI is a strong acid, so [H⁺] = 0.0172 M
Step 3: Calculate the pH
pH = -log [H⁺]
pH = -log 0.0172
pH = 1.76
I think this the the list of choices relating to the above question.
reaction rate
<span>activation energy </span>
<span>collision theory </span>
<span>spontaneous reaction
</span>
The term that best relate to ben's observation is REACTION RATE.
Reaction rate is defined as the speed at which the chemical reaction proceeds. It either is the amount of concentration of a product in a given unit of time or the concentration of the reactant that is being consumed in a unit of time.
Answer:
See explanation and image attached
Explanation:
My aim is to convert 1-bromobutane to butanal. The first step is to react the 1-bromobutane substrate with water. This reaction occurs by SN2 mechanism to yield 1-butanol. Hence reagent A is water.
1-butanol is now reacted with an oxidizing agent such as acidified K2Cr2O7 (reagent B) to yield butanal. Note that primary alkanols are oxidized to alkanals.
These sequence of reactions are shown in the image attached.
Answer:
See image attached and explanation
Explanation:
The stratospheric ozone layer is very important in absorbing high-energy ultraviolet radiation that is harmful to living systems on earth. The concentration of ozone in the stratosphere is determined by both thermal and photochemical pathways for its decomposition. Nitric oxide, NO, is a trace constituent in the stratosphere that reacts with ozone to form nitrogen dioxide, NO2, and the diatomic oxygen molecule. The nitrogen-oxygen bond in NO2 is relatively weak. When an NO2 molecule encounters an oxygen atom, it transfers an oxygen, forming O2 and NO. The chemical reactions involved are formations of NO2 following by reaction of NO2 with atomic oxygen for form NO and O2. The sum of both reactions show that the overall reaction is simply the reaction of ozone with atomic oxygen to form two molecules of molecular oxygen. Hence, NO only serves as a catalyst, it does not undergo a permanent change itself.