Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R
Answer:
9.8 Newton
Explanation:
At average gravity on earth (conventionally, g=9.80665m/s2),
a kilogram mass exerts a force of about 9.8 newton
I hope this answer helps you
Answer:
This what they all been waiting for
I guess so
They been waiting for this sh,it for a long time didn't they
I'ma give it everything I got
Ayo Dougie park that X6 around the corner
Aye I'm just feeling my vibe right now
I'm feeling myself
Explanation:
Mass have no effect for the projectile motion and u want to know the height "h"
first,
find the vertical and horizontal components of velocity
vertical component of velocity = 12 sin 61
horizontal component of velocity = 12 cos 61
now for the vertical motion ;
S = ut + (1/2) at^2
where
s = h
u = initial vertical component of velocity
t = 0.473 s
a = gravitational deceleration (-g) = -9.8 m/s^2
h=[12×sin 610×0.473]+[−9.8×(0.473)2]
u can simplify this and u will get the answer
h=.5Gt2
H=1.09m