No <span>The atom is composer of neutrons, protons and electrons. </span>
<span>So it is divisible in smaller pieces.</span>
The karst topography is typically defined as a geographic location characterized by a rugged terrain containing landscapes like underground rivers, fissures, and cracks. It is mainly due to the dissolution of the bedrock due to a much heavier precipitation taking place in the geographic location.
Answer:
pf = 198.8 kg*m/s
θ = 46.8º N of E.
Explanation:
- Since total momentum is conserved, and momentum is a vector, the components of the momentum along two axes perpendicular each other must be conserved too.
- If we call the positive x- axis to the W-E direction, and the positive y-axis to the S-N direction, we can write the following equation for the initial momentum along the x-axis:

- We can do exactly the same for the initial momentum along the y-axis:

- The final momentum along the x-axis, since the collision is inelastic and both objects stick together after the collision, can be written as follows:

- We can repeat the process for the y-axis, as follows:

- Since (1) is equal to (3), replacing for the givens, and since p₀Bₓ = 0, we can solve for vfₓ as follows:

- In the same way, we can find the component of the final momentum along the y-axis, as follows:

- With the values of vfx and vfy, we can find the magnitude of the final speed of the two-object system, applying the Pythagorean Theorem, as follows:

- The magnitude of the final total momentum is just the product of the combined mass of both objects times the magnitude of the final speed:

- Finally, the angle that the final momentum vector makes with the positive x-axis, is the same that the final velocity vector makes with it.
- We can find this angle applying the definition of tangent of an angle, as follows:

⇒ θ = tg⁻¹ (1.06) = 46.8º N of E
Answer : The correct option is (d) 2.73 m
Explanation :
By the 2nd equation of motion,

where,
s = distance or height = ?
u = initial velocity = 3.0 m/s
t = time = 0.5 s
a = acceleration due to gravity = 
Now put all the given values in the above equation, we get:


Therefore, the correct option is (d) 2.73 m
Answer:
Displacement: 2.230 km Average velocity: 1.274
Explanation:
Let's represent displacement by the letter S and the displacement in direction 49.7° as A. Displaement is a vector, so we need to decompose all the bird's displacement into their X-Y compoments. Let's go one by one:
- 0.916 km due east is an horizontal direction and cane be seen as direction towards the negative side of X-axis.
- 0.928 km due south is a vertical direction and can be seen as a direction towards the negative side of Y-axis.
- 3.52 km in a direction of 49.7° has components on X and Y axes. It is necessary to break it down using trigonometry,
First of all. We need to sum all the X components and all the Y componets.
∑
⇒ ∑![Sx = [tex]3.52cos(49.7) - 0.916](https://tex.z-dn.net/?f=Sx%20%3D%20%5Btex%5D3.52cos%2849.7%29%20-%200.916)
∑
∑
⇒ ∑
∑
The total displacement is calculated using Pythagoeran therorem:
⇒

With displacement calculated, we can find the average speed as follows:
⇒ 
