Answer:
The gravitational pull from the Moon has the greatest effect on the size of the tides.
Hope this helps, :)
Answer:
D. is always perpendicular to the surface of the conductor
Explanation:
1) Answer is (D) option. Electric field just outside surface of charged conductor is normal to conductor at that point.
It can be explained on the basis of the fact that, Electric field inside conductor under static condition is zero. As a result potential difference between any two points with in conductor is zero. So whole of conductor is equipotential body.
Equipotential surface and Electric field lines always cut at 90 degrees to each other. Conductor being equipotential body, Electric field lines starting or terminating at conductor must be normal to surface. Hence electric field just outside conductor is perpendicular or normal to surface.
Answer:
Explanation:
Let the separation required be d .
Force between rod = 10⁻⁷ x 2 I₁ I₂ L / d
where I₁ and I₂ are current in them , d is distance of separation and L is length of wire .
Force between rod = 10⁻⁷ x 2 x 1200 x 1200 x .69 / d
= .1987 /d
Restoring Force by spring = k x where k is force constant and x is compression .
= 130 x .03
= 3.9 N
For balancing
Restoring Force by spring = Force between rod
.1987 /d = 3.9
d = .1987 /3.9
= .0509 m
= 5.09 cm .
Ranboo oobnar have a good day
Let, the temperature of Sun's surface = c
So, 5c = 30, 000
c = 30,000 / 5
c = 6,000
In short, Your Answer would be 6000
Hope this helps!