Depends on how the sword is made, what materials are used and temperature used but yes they can shatter.
When molecules cool down they stop vibrating and moving as much and so they "shrink" and the metal of the sword becomes brittle. sometimes they shrink at different phases which cause tension in the sword if this tension is strong enough it can cause the metallic bonds to break causing the sword to shatter.
hope that helps
Answer:
a) increases
b) decreases
c) does not change
d) increases
Explanation:
The vapour pressure of a liquid is dependent on;
I) the magnitude of intermolecular forces
II) the temperature of the liquid
Hence, when any of these increases, the vapour pressure increases likewise.
Similarly, the boiling point of a liquid depends on the magnitude of intermolecular forces present because as intermolecular forces increases, more energy is required to break intermolecular bonds.
Lastly, increase in surface area of a liquid does not really affect it's vapour pressure.
I think the answer is chemical change
Answer:

Explanation:
Hello,
In this case, the Boyle's is mathematically defined via:

Which stands for an inversely proportional relationship between volume and pressure, it means the higher the volume the lower the pressure and vice versa. In such a way, since the volume is decreased to one quarter, we can write:

We can compute the new pressure:

Which means the pressure is increased by a factor of four.
Regards.
Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.