5.451 X 10³ kg of sodium carbonate must be added to neutralize 5.04×103 kg of sulfuric acid solution.
<u>Explanation</u>:
- Sodium carbonate is used to neutralized sulfuric acid, H₂SO₄. Sodium carbonate is the salt of a strong base (NaOH) and weak acid (H₂CO₃). The balanced chemical reaction for neutralization is as follows:
Na₂CO₃ + H₂SO₄ ----> Na₂SO₄ + H₂CO₃
- From a balanced chemical equation, it is clear that one mole of Na₂CO₃ is required to neutralize one mole of H₂SO₄.
- Molar mass of Na₂CO₃= 106 g/mol = 0.106 kg/mol and Molar mass of H₂SO₄= 98 g/mol = 0.098 kg/mol.
- To neutralize 0.098 kg of H₂SO₄ amount of Na₂CO₃ required is 0.106 kg, so, To neutralize 5.04×10³ kg of H₂SO₄, Na₂CO₃ required is = 5.451 X 10³ kg.
Answer:
<h2>The P wave will be the first wiggle that is bigger than the rest of the little ones (the microseisms). Because P waves are the fastest seismic waves, they will usually be the first ones that your seismograph records. The next set of seismic waves on your seismogram will be the S waves</h2>
Cs+1
The only common oxidation state is +1.
Answer:
Explanation:
Temperature of gas in absolute scale T = 25 + 273 = 298 .
pressure of gas P = 1.013 x 10⁵ N / m²
density D = 1.799 kg / m³
= 1799 g / m³
From gas formula
PV / T = n R Where P is pressure , V is volume and T is absolute temperature , n is no of moles
P / T = n R / V
P / T = m R /M V where m is mass of gas and M is molecular weight .
m / V = D ( density )
P / T = DR/ M
PM / DT = R
Putting the values
1.013 x 10⁵ x 44 / (1799 x 298)
R = 8.314.09 J / K mole
I can't see the picture, but in general, I believe it is in dropping from the first energy level above the ground state, to the ground state.