The molarity of the solution made by dissolving 0.05 mole of HCl in 2 L of H₂O is 0.025 M
<h3>What is molarity? </h3>
Molarity is defined as the mole of solute per unit litre of solution. Mathematically, it can be expressed as:
Molarity = mole / Volume
<h3>How to determine the molarity </h3>
- Mole of HCl = 0.05 mole
- Volume = 2 L
- Molarity =?
Molarity = mole / Volume
Molarity = 0.05 / 2
Molarity = 0.025 M
Thus, the molarity of the solution is 0.025 M
Learn more about molarity:
brainly.com/question/9468209
Answer:
The number of atoms in 1 mole silver is also 6.022 *10^23 atoms.
Option C is correct.
Explanation:
Step 1: Data given
Mass of 1 mole silver = 107.9 grams
Step 2: Calculate the number of atoms in 1 mole of silver
To calculate the number of atoms in 1 mole, we multiply the number of Avogadro by the number of moles
Number of atoms = 1 mol * 6.022 *10^23 atoms/ mol
Number of atoms = 6.022 * 10^23 atoms
Since the number of Avogadro says there are 6.022 * 10^23 atoms per 1 mole. The number of atoms in 1 mole silver is also 6.022 *10^23 atoms.
Option C is correct.
1- physical
2-chemical
3-Physical
4-Chemical
5-I’m not sure
I haven’t done this in a while so these may be wrong sorry
Answer:
The ionic bond in NaCl are stronger than the stronger than the dispersion forces in HCl.
The hydrogen bonds in H2O are stronger than the dispersion forces in H2Se
Hydrogen bonds in NH3 are stronger than the dipole-dipole attractions in PH3.
Hydrogen bonds in HF are stronger than the dispersion forces in F2
Explanation:
Ionic bonds occur in molecules with high differences in their electronegative value where there are actual transfer of electrons. HCl has a bond which is involved in the sharing of electrons.
Hydrogen bonds are present in H2O which is stronger than the dispersion forces.
PH3 is a larger molecule with greater dispersion forces than ammonia, NH3 has very polar N-H bonds leading to strong hydrogen bonding. This dominant intermolecular force results in a greater attraction between NH3 molecules than there is between PH3 molecules.
F2 is a non-polar molecule, therefore they have London dispersion forces between molecules while HF has a hydrogen bond because F is highly electronegative.
Covalent bonding!!!!!!!!!!!!!!!!!!!!!!!!!!!!!