Answer:
pKa of the histidine = 9.67
Explanation:
The relation between standard Gibbs energy and equilibrium constant is shown below as:
R is Gas constant having value = 0.008314 kJ / K mol
Given temperature, T = 293 K
Given,
So, Applying in the equation as:-
Thus,
![\frac{[His]}{[His+]}=e^{\frac{15}{-0.008314\times 293}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D%3De%5E%7B%5Cfrac%7B15%7D%7B-0.008314%5Ctimes%20293%7D)
![\frac{[His]}{[His+]}=0.00211](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D%3D0.00211)
Also, considering:-
![pH=pKa+log\frac{[His]}{[His+]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D)
Given that:- pH = 7.0
So, 
<u>pKa of the histidine = 9.67</u>
Answer:
<em>The type of vegetation a surface does affect the </em><em>water coming from above to sink in or runoff. </em>
Explanation:
This is how the vegetation affects the runoff:-
The leaves and stems present in the vegetation do not let the water fall directly on the soil and makes the process rather slow which makes the water to get to the ground slowly and sink in properly inside the soil rather than running off.
If the vegetation present is dense with there was being hairy then also the water would not run out and will get absorbed by the roots letting the soil intact
Answer:
The molar mass of copper (II) nitrate is 187.5 g/mol.
Explanation:
The molar mass is the mass of all the atoms in a molecule in grams per mole. To calculate the molar mass of a molecule, we first obtain the atomic weights from the individual elements in a periodic table. We then count the number of atoms and multiply it by the individual atomic masses.
First, we need the no.of moles of O2 = mass/molar mass of O2
= 55 g / 32 g/mol
= 1.72 mol
from the balanced equation of the reaction:
2H2 (g) + O2(g) → 2H2O(g)
we can see that the molar ratio between O2: H2O = 1: 2
So we can get the no.of moles of H2O = 2 * moles of O2
= 2 * 1.72 mol
= 3.44 mol
So by substitution by this value in ideal gas formula:
PV = nRT
when P = 12.4 atm & n H2O = 3.44 mol & R= 0.0821 & T = 85 + 273=358K
12.4 atm *V = 3.44 * 0.0821 * 358 = 8.15 L
∴ V ≈ 8.2 L
A machine called a barometer is what is used to measure atmospheric pressure :D