In all atoms, the number of protons and the number of electrons is always the same. The number of neutrons is very roughly the same as the number of protons, but sometimes it's rather more. The number of protons in an atom is called the atomic number and it tells you what type of atom you have.
Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,

The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get

Therefore, the value of reaction quotient, Q is 0.0625.
Answer:1) It is due to large cohesive force acting between the molecules of mercury that the droplets of mercury when brought in contact pulled together to form a bigger drop in order to make potential energy minimum. The temperature of this bigger drop increases since the total surface area decreases.
2) A spherical shape has the minimum surface area to volume ratio of all geometric forms. When two drops of a liquid are brought in contact, the cohesive forces between their molecules coalesce the drops into a single larger drop. This is because, the volume of the liquid remaining the same, the surface area of the resulting single drop is less than the combined surface area of the smaller drops. The resulting decrease in surface energy is released into the environment as heat.
A substance floats or sinks in another because of its relative density. Take ice floating in water for example. Water is more dense than ice so ice floats.
Mass is incorrect as the buoyancy or ability of an object to float depends on the mass per volume, which is equivalent to density.
Answer:
15.5g
Explanation:
"The total mass of both chemicals and the containers they are in is 15.5 g." After a chemical reaction, by conservation of mass, the total mass of the products and the two containers after reaction is the same at 15.5g.