Answer:
every 1/4 inch on the map is 1 mile.
You need to find the number of 1/4 inches there are in 3 1/2 inches.
There are four 1/4 inches per inch.
3 x 4 = 12
There are two 1/4 inches in 1/2 inch.
12+2 = 14
The cities are 14 miles apart.
Answer:
its a 21:45
Step-by-step explanation: it a because 7x3 will equal 21 you got 21 in there. 15 x 3 will equal 45 and you got 45 there so a is your answer.
5. 4 rows of circles with 4 columns of circles
6. A Hexagon with 4 circles
Answer:
y-9= -4(x+1)
Step-by-step explanation:
First, you should know what the format for point slope form is. y-y1=m(x-x1). Now, fill in the points to the x1 and y1 variables. It doesn't matter what ordered pair you use. If the number you fill in is negative, for example, -1, change it to a positive 1. If you're plugging in a positive number such as 9, it becomes -9. Now, it may look like this: y-9=m(x+1). However, you still need to find slope. You can use the expression y-y1/x-x1. 9-1=8. -1-1= -2. So, your slope is 8/-2. However, you can simplify this to -4. Now, plug in -4 to your equation to have your final answer: y-9=-4(x+1).
Let's do this by Briot-Ruffini
First: Find the monomial root
x - 2 = 0
x = 2
Second: Allign this root with all the other coeficients from equation
Equation = -3x³ - 2x² - x - 2
Coeficients = -3, -2, -1, -2
2 | -3 -2 -1 -2
Copy the first coeficient
2 | -3 -2 -1 -2
-3
Multiply him by the root and sum with the next coeficient
2.(-3) = -6
-6 + (-2) = -8
2 | -3 -2 -1 -2
-3 -8
Do the same
2.(-8) = -16
-16 + (-1) = -17
2 | -3 -2 -1 -2
-3 -8 -17
The same,
2.(-17) = -34
-34 + (-2) = -36
2 | -3 -2 -1 -2
-3 -8 -17 -36
Now you just need to put the "x" after all these numbers with one exponent less, see
2 | -3x³ - 2x² - 1x - 2
-3x² - 8x - 17 -36
You may be asking what exponent -36 should be, and I say:
None or the monomial. He's like the rest of this division, so you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 with rest -36 or you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 - 36/(x - 2)
Just divide the rest by the monomial.