Explanation:
The chemical reaction given in the question is as follows -
MnO₄⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O (l)
NO₃⁻ (aq) + 4H⁺ (aq) + 3e⁻ → NO (g) + 2H₂O (l)
As we know , the value for reduction potential are -
Mn²⁺ = + 1.51 V
NO₃⁻ = +0.96 V
From , the data given above , the value of the reduction potential of NO₃⁻ is less than the reduction potential of Mn²⁺ .
Hence ,
NO₃⁻ can not oxidize Mn²⁺ .
Answer:
Noble Gases
Explanation:
The Noble Gases have a full valence shell of 8 electrons. They are stable in that sense.
The tree I know is producer
Answer:
hydrogen nitrate + sodium hydrochlorate- sodium nitrate+ water + co2 (acid base reaction)
silver nitrate + calcium chloride - silver chloride+ calcium nitrate ( double displacement reaction)
hydrogen + nitrogen - ammonia gas ( simple contact reaction)
hydrogen peroxide - water + oxygen ( single displacement reaction)
Hope it helps :)
Unfortunately, we have not fully solved the 'nitrogen problem'. To do this, we must halve the amount of nitrogen we dump into the environment by mid-century or our ecosystems will face epidemics of toxic tides, lifeless rivers, and dead oceans. And that to do that will require, among other things, almost doubling the efficiency of nitrogen use on the world’s farms.