Answer:
Approximately
(approximately
) assuming that the magnetic field and the wire are both horizontal.
Explanation:
Let
denote the angle between the wire and the magnetic field.
Let
denote the magnitude of the magnetic field.
Let
denote the length of the wire.
Let
denote the current in this wire.
The magnetic force on the wire would be:
.
Because of the
term, the magnetic force on the wire is maximized when the wire is perpendicular to the magnetic field (such that the angle between them is
.)
In this question:
(or, equivalently,
radians, if the calculator is in radian mode.)
.
.
.
Rearrange the equation
to find an expression for
, the current in this wire.
.
It’s true. longer wavelength means a lower frequency, and a shorter wavelength means a higher frequency!
Answer:
W = 112.58 N-unit
Explanation:
Given:
- Force F = 10 N
- Angle Q of force with x axis: 30 degrees
- distance to be moved d = 13 units along + x axis
Find:
Work Done by the force F:
Solution:
The work by force in positive x direction can only be done if the both the direction of distance traveled and direction of force are parallel vectors. Hence we compute the component of Force F in x direction F_x:
F_x = F*cos(Q)
F_x = 10*cos(30)
F_x = 8.66 N
Hence,
Work Done by force
W = F_x * d
W = 8.66 * 13
W = 112.58 N-unit
If you lived downhill and lave started to flow toward your home sometime that could happen is the lava could completely demolish your home