Yes there is an elastic collision in physics its when a collision occurs but no kinetic energy is loss. We study them in order to understand how to conserve momentum.
Explanation:
we are not given the pressure change, check yhe question please
Answer:
the Hudson Bay was covered with alpine glaciers
Explanation:
During the last glacial period, large portions of North America were covered with ice. The majority of the ice was from the ice sheets that were covering Canada and the northern part of the United States, and the alpine glaciers on the mountain ranges. Hudson Bay was all frozen at this point of time. It was not covered with alpine glaciers though, instead it was covered with the ice of the extended ice sheets, with the ice cover reaching up to 2 km in thickness.
Answer:
L/2
Explanation:
Neglect any air or other resistant, for the ball can wrap its string around the bar, it must rotate a full circle around the bar. This means the ball should be able to swing to the top position where it's directly above the bar. By the law of energy conservation, this happens when the ball is at the same level as where it's previously released vertically. It means the swinging radius around the bar must be at least half of the string length.
So the distance d between the bar and the pivot should be at least L/2
We can calculate the acceleration of Cole due to friction using Newton's second law of motion:
where
is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find
Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:
where
is the final speed of the sled
is the initial speed
is the distance covered
By rearranging the equation, we find d: