Tetrahedron generally known as triangular pyramid consists of 4 triangular faces, 6 edges and 4 vertices. The base of the tetrahedron is a triangle. All the vertices have the same atom that is bonded to the central metal atom which lies in the centre of the tetrahedron. We take
as an example to see how the atoms actually bond in tetrahedron. It is quite visible from the image that 4 O-atoms lies on all the 4 vertices and 1 Si-atom lie in the centre.
A. [1,2] sigmatropic hydrogen migration
Weight has to do with how hard gravity is pulling on it. While mass is do to with the atoms in the matter.
<span>6.50x10^3 calories.
Now we have 4 pieces of data and want a single result. The data is:
Mass: 100.0 g
Starting temperature: 25.0°C
Ending temperature: 31.5°C
Specific heat: 1.00 cal/(g*°C)
And we want a result with the unit "cal". Now you need to figure out what set of math operations will give you the desired result. Turns out this is quite simple. First, you need to remember that you can only add or subtract things that have the same units. You may multiply or divide data items with different units and the units can combine or cancel each other. So let's solve this:
Let's start with specific heat with the unit "cal/(g*°C)". The cal is what we want, but we'ld like to get rid of the "/(g*°C)" part. So let's multiply by the mass:
1.00 cal/(g*°C) * 100.0 g = 100.0 cal/°C
We now have a simpler unit of "cal/°C", so we're getting closer. Just need to cancel out the "/°C" part, which we can do with a multiplication. But we have 2 pieces of data using "°C". We can't multiply both of them, that would give us "cal*°C" which we don't want. But we need to use both pieces. And since we're interested in the temperature change, let's subtract them. So
31.5°C - 25.0°C = 6.5°C
So we have a 6.5°C change in temperature. Now let's multiply:
6.5°C * 100.0 cal/°C = 6500.0 cal
Since we only have 3 significant digits in our least precise piece of data, we need to round the result to 3 significant figures. 6500 only has 2 significant digits, and 6500. has 4. But we can use scientific notation to express the result as 6.50x10^3 which has the desired 3 digits of significance. So the result is 6.50x10^3 calories.
Just remember to pay attention to the units in the data you have. They will pretty much tell you exactly what to add, subtract, multiply, or divide.</span>
<span>To
solve this we assume that the gas is an ideal gas. Then, we can use the ideal
gas equation which is expressed as PV = nRT. At number of moles the value of PV/T is equal to some constant. At another
set of condition of temperature, the constant is still the same. Calculations
are as follows:</span>
P1V1/T1 = P2V2/T2
P1 = P2V2T1/T2V1
P1 = (114)(1.32)(596)/(715)(.654)
P1 = 191.80 kPa