Answer:
If south-east Texas is where H then it is C, but if not the answer is A.
Answer:
Acoustic microstreaming
Explanation:
Acoustic microstreaming is the swirling effect produced by water stream confined in a spaced of a periodontal pocket.
- It is the movement of water in a particular direction as a result of mechanical pressure within the fluid body.
- They are often used in dental procedures to remove particulates from the teeth.
- It mostly relies on the properties of sound waves to achieve this goal
Answer:
Explanation:
Let the charge on bead A be q nC and the charge on bead B be 28nC - qnC
Force F between them
4.8\times10^{-4} = 
=120 x 10⁻⁸ = 9 x q(28 - q ) x 10⁻⁹
133.33 = 28q - q²
q²- 28q +133.33 = 0
It is a quadratic equation , which has two solution
q_A = 21.91 x 10⁻⁹C or q_B = 6.09 x 10⁻⁹ C
Answer:
a) m =1 θ = sin⁻¹ λ / d, m = 2 θ = sin⁻¹ ( λ / 2d)
, c) m = 3
Explanation:
a) In the interference phenomenon the maxima are given by the expression
d sin θ = m λ
the maximum for m = 1 is at the angle
θ = sin⁻¹ λ / d
the second maximum m = 2
θ = sin⁻¹ ( λ / 2d)
the third maximum m = 3
θ = sin⁻¹ ( λ / 3d)
the fourth maximum m = 4
θ = sin⁻¹ ( λ / 4d)
b) If we take into account the effect of diffraction, the intensity of the maximums is modulated by the envelope of the diffraction of each slit.
I = I₀ cos² (Ф) (sin x / x)²
Ф = π d sin θ /λ
x = pi a sin θ /λ
where a is the width of the slits
with the values of part a are introduced in the expression and we can calculate intensity of each maximum
c) The interference phenomenon gives us maximums of equal intensity and is modulated by the diffraction phenomenon that presents a minimum, when the interference reaches this minimum and is no longer present
maximum interference d sin θ = m λ
first diffraction minimum a sin θ = λ
we divide the two expressions
d / a = m
In our case
3a / a = m
m = 3
order three is no longer visible
Answer:
E) 800 km/h
Explanation:
The computation of the average vector velocity module of the plane, at that time is shown below:
The displacement vector is
d^2 = d1^2 + d2^2
where,
d1 = northeast displacement
d2 = southeast displacement
Now
d^2 = (120)^2 + (160)^2
= 14400 + 2560
= 40000
= √40000
d = 200 km
Now the average velocity is
V = ΔS ÷ Δt
= 200 ÷ 1 ÷ 4
= 200 × 4
= 800 km/h