Answer:
(a) dynamic viscosity = 
(b) kinematic viscosity = 
Explanation:
We have given temperature T = 288.15 K
Density 
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120

= 291.15
when T = 288.15 K
For kinematic viscosity :


Answer:
Yes, fracture will occur
Explanation:
Half length of internal crack will be 4mm/2=2mm=0.002m
To find the dimensionless parameter, we use critical stress crack propagation equation
and making Y the subject

Where Y is the dimensionless parameter, a is half length of crack, K is plane strain fracture toughness,
is critical stress required for initiating crack propagation. Substituting the figures given in question we obtain

When the maximum internal crack length is 6mm, half the length of internal crack is 6mm/2=3mm=0.003m
and making K the subject
and substituting 260 MPa for
while a is taken as 0.003m and Y is already known

Therefore, fracture toughness at critical stress when maximum internal crack is 6mm is 42.455 Mpa and since it’s greater than 40 Mpa, fracture occurs to the material
Well Bob would need to calculate to net force of someone going down a water slide. Since the person is going down the slide, the person will go faster, depending on their mass/weight and the gravitational pull.
Answer:
7.8 Mph
Explanation:
Rate of cycling = 1.1 rev/s
Rear wheel diameter = 26 inches
Diameter of sprocket on pedal = 6 inches
Diameter of sprocket on rear wheel = 4 inches
Circumference of rear wheel = \pi d=26\piπd=26π
Speed would be
\begin{gathered}\text{Rate of cycling}\times \frac{\text{Diameter of sprocket on pedal}}{\text{Diameter of sprocket on rear wheel}}\times{\text{Circumference of rear wheel}}\\ =1.1\times \frac{6}{4}\times 26\pi\\ =134.77432\ inches/s\end{gathered}Rate of cycling×Diameter of sprocket on rear wheelDiameter of sprocket on pedal×Circumference of rear wheel=1.1×46×26π=134.77432 inches/s
Converting to mph
1\ inch/s=\frac{1}{63360}\times 3600\ mph1 inch/s=633601×3600 mph
134.77432\ inches/s=134.77432\times \frac{1}{63360}\times 3600\ mph=7.65763\ mph134.77432 inches/s=134.77432×633601×3600 mph=7.65763 mph
The Speed of the bicycle is 7.8 mph
Answer:
MRR = 1.984
Explanation:
Given that
Depth of cut ,d=0.105 in
Diameter D= 1 in
Speed V= 105 sfpm
feed f= 0.015 ipr
Now the metal removal rate given as
MRR= 12 f V d
d= depth of cut
V= Speed
f=Feed
MRR= Metal removal rate
By putting the values
MRR= 12 f V d
MRR = 12 x 0.015 x 105 x 0.105
MRR = 1.984
Therefore answer is -
1.944