1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
3 years ago
6

An add tape of 101 ft is incorrectly recorded as 100 ft for a 200-ft distance. What is

Engineering
1 answer:
baherus [9]3 years ago
4 0

Answer:

the correct distance is 202 ft

Explanation:

The computation of the correct distance is shown below:

But before that correction to be applied should be determined

= (101 ft - 100 ft) ÷ (100 ft) × 200 ft

= 2 ft

Now the correct distance is

= 200 ft +  2 ft

= 202 ft

Hence, the correct distance is 202 ft

The same would be relevant and considered too

You might be interested in
(40%) A bank wants to store the account number of its customers (an 8-digit number) in encrypted form on magnetic stripe ATM car
9966 [12]

Answer:

Explanation:

Attached is the solution to the question

3 0
3 years ago
What factors are likely to promote the formation of stress corrosion cracks?
Naddika [18.5K]

Answer:

Stress corrosion cracking

Explanation:

This occurs when susceptible materials subjected to an environment that causes cracking effect by the production of folds and tensile stress. This also depends upon the nature of the corrosive environment.

Factors like high-temperature water, along with Carbonization and chlorination, static stress, and material properties.

7 0
3 years ago
A budding electronics hobbyist wants to make a simple 1.0-nF capacitor for tuning her crystal radio, using two sheets of aluminu
bazaltina [42]

Answer:

a. 8 sheets of paper is needed between her plates to get the proper capacitance

b. Area of Aluminum Foil needed = 0.45m²

c. To keep a 1.0-nF, a larger area of Teflon is required.

Explanation:

a.

First, we need to calculate the distance between two plates.

This is given by

d = Kε0A/C

Where

K = 3

ε0 = Physical Constant = 8.854 * 10^-12 C²/Nm²

A = Area = 22 * 28 = 616cm² = 0.0616m²

C = 1.0-nF = 1 * 10^-12F

So, d = (3 * 8.854 * 10^-12 C²/Nm² * 0.0616) / (1 * 10^-12F)

d = 1.64 * 10^-3m

d = 1.64mm

Now, that the distance has been solved.

The Number of Sheets, N is given by

N = d/d,sheet where d, sheet =the sheet thickness = 0.2mm

N = 1.64/0.2

N = 8.2

N = 8 sheets --- Approximated

b.

Here, she's changed the diameter of the sheets to 12mm

Well make use of the formula in (a) above

Using d = Kε0A/C

Where

d = 12 * 10^-3m

Other constraints remain unchanged

Make A the subject of formula

A = dC/Kε0

A = (12 * 10^-3m * 1 * 10^-12F)/(3 * 8.854 * 10^-12 C²/Nm²)

A= 0.45m²

c. From (b) above

A ∝ 1/K

As the dielectric constant increase, the area decreases

The dielectric constant of a Teflon is 2.1

This means that if she used a Teflon instead, the area will be larger.

So, to keep a 1.0-nF, a larger area of Teflon is required.

7 0
3 years ago
Consider the expansion of a gas at a constant temperature in a water-cooled piston-cylinder system. The constant temperature is
Leona [35]

Answer:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

Explanation:

According to the first thermodynamic law, the energy must be conserved so:

dQ = dU - dW

Where Q is the heat transmitted to the system, U is the internal energy and W is the work done by the system.

This equation can be solved by integration between an initial and a final state:

(1) \int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU - \int\limits^1_2 {} \, dW

As per work definition:

dW = F*dr

For pressure the force F equials the pressure multiplied by the area of the piston, and considering dx as the displacement:

dW = PA*dx

Here A*dx equals the differential volume of the piston, and considering that any increment in volume is a work done by the system, the sign is negative, so:

dW = - P*dV

So the third integral in equation (1) is:

\int\limits^1_2 {- P} \, dV

Considering the gas as ideal, the pressure can be calculated as P = \frac{n*R*T}{V}, so:

\int\limits^1_2 {- P} \, dV = \int\limits^1_2 {- \frac{n*R*T}{V}} \, dV

In this particular case as the systems is closed and the temperature constant, n, R and T are constants:

\int\limits^1_2 {- \frac{n*R*T}{V}} \, dV = -nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Replacion this and solving equation (1) between state 1 and 2:

\int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU + nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT(ln V_{2} - ln V_{1})

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT ln \frac{V_{2}}{V_{1}}

The internal energy depends only on the temperature of the gas, so there is no internal energy change U_{2} - U_{1} = 0, so the heat exchanged to the system equals the work done by the system:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

4 0
3 years ago
Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 12 MPa, and the condenser pressure i
Brilliant_brown [7]

Answer:

\dot Q_{in} = 372.239\,MW

Explanation:

The water enters to the pump as saturated liquid and equation is modelled after the First Law of Thermodynamics:

w_{in} + h_{in}- h_{out} = 0

h_{out} = w_{in}+h_{in}

h_{out} = 12\,\frac{kJ}{kg} + 191.81\,\frac{kJ}{kg}

h_{out} = 203.81\,\frac{kJ}{kg}

The boiler heats the water to the state of saturated vapor, whose specific enthalpy is:

h_{out} = 2685.4\,\frac{kJ}{kg}

The rate of heat transfer in the boiler is:

\dot Q_{in} = \left(150\,\frac{kg}{s}\right)\cdot \left(2685.4\,\frac{kJ}{kg}-203.81\,\frac{kJ}{kg} \right)\cdot \left(\frac{1\,MW}{1000\,kW} \right)

\dot Q_{in} = 372.239\,MW

3 0
3 years ago
Read 2 more answers
Other questions:
  • A mass of 0.3 kg is suspended from a spring of stiffness 0.4 N/mm. The damping is 3.286335345 kg/s. What is the undamped natural
    5·1 answer
  • In Visual Basic/Visual Studio, characteristics of controls, such as the Name of the control, or the Text displayed on the contro
    10·1 answer
  • A fatigue test is performed on 69 rotating specimens made of 5160H steel. The measured number of cycles to failure (L in kcycles
    6·1 answer
  • Please explain the theory of Hydrostatic Thrust on a plane Surface
    14·2 answers
  • 1. Using a typical frequency value for the initiating event and PFD values provided in class lectures, estimate the mishap or co
    6·1 answer
  • Helium gas expands in a piston-cylinder in a polytropic process with n=1.67. Is the work positive, negative or zero?
    8·1 answer
  • What quantity measures the effect of change?
    12·2 answers
  • Which lists the order of Energy Career Pathways from the source to the customer?
    9·2 answers
  • (20 points) A 1 mm diameter tube is connected to the bottom of a container filled with water to a height of 2 cm from the bottom
    12·1 answer
  • A driver complains that his front tires are wearing
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!