Answer:
import numpy as np
import time
def matrixMul(m1,m2):
if m1.shape[1] == m2.shape[0]:
t1 = time.time()
r1 = np.zeros((m1.shape[0],m2.shape[1]))
for i in range(m1.shape[0]):
for j in range(m2.shape[1]):
r1[i,j] = (m1[i]*m2.transpose()[j]).sum()
t2 = time.time()
print("Native implementation: ",r1)
print("Time: ",t2-t1)
t1 = time.time()
r2 = m1.dot(m2)
t2 = time.time()
print("\nEfficient implementation: ",r2)
print("Time: ",t2-t1)
else:
print("Wrong dimensions!")
Explanation:
We define a function (matrixMul) that receive two arrays representing the two matrices to be multiplied, then we verify is the dimensions are appropriated for matrix multiplication if so we proceed with the native implementation consisting of two for-loops and prints the result of the operation and the execution time, then we proceed with the efficient implementation using .dot method then we return the result with the operation time. As you can see from the image the execution time is appreciable just for large matrices, in such a case the execution time of the efficient implementation can be 1000 times faster than the native implementation.
External depreciation may be defined as a loss in value caused by an undesirable or hazardous influence offsite.
<h3>What is depreciation?</h3>
Depreciation may be defined as a situation when the financial value of an acquisition declines over time due to exploitation, fray, and incision, or obsolescence.
External depreciation may also be referred to as "economic obsolescence". It causes a negative influence on the financial value gradually.
Therefore, it is well described above.
To learn more about Depreciation, refer to the link:
brainly.com/question/1203926
#SPJ1
<h2>
Answer:</h2>
7532V
<h2>
Explanation:</h2>
For a given transformer, the ratio of the number of turns in its primary coil (
) to the number of turns in its secondary coil (
) is equal to the ratio of the input voltage (
) to the output voltage (
) of the transformer. i.e
=
----------------(i)
<em>From the question;</em>
= number of turns in the primary coil = 8 turns
= number of turns in the secondary coil = 515 turns
= input voltage = 117V
<em>Substitute these values into equation (i) as follows;</em>
= 
<em>Solve for </em>
<em>;</em>
= 117 x 515 / 8
= 7532V
Therefore, the output voltage (in V) of the transformer is 7532
a= the force of gravity b= the amount of bicker to maple syrup ratio
Closest one is A. “The largest Vehicle”