Both diamond and graphite are allotropes of carbon. Diamond has a high tensile strength but graphite does not.
<h3>What is a molecular model?</h3>
A molecular model is used to describe the actual behavior of a chemical compound based on the kind of bonds that exists in the molecule. Now we are talking about diamond and graphite.
Graphite is composed of hexagonal rings of carbon atoms that form layers that are held together by weak Van Der Walls forces hence they can slide over each other. This is the reason why graphite does not have a high tensile strength.
On the other hand, diamond is made up of octagonal rings of carbon atoms which are rigid and form a strong covalent network solid that explains why graphite has a high tensile strength.
Learn more about diamond and graphite:brainly.com/question/8853712
#SPJ1
Characteristic properties can be used to describe and identify the substances, while non-characteristic properties, although can be used to describe the substances, cannot be used to identify them.
Temperature, mass, color, shape and volume are examples of non-characteristic properties.
Density, boiling point, melting point, chemical reactivity are examples of characteristic properties.
List of the properties observed by the scientist:
-----------------------------------------------------------------
Property Type of property
----------------------------------------------------------------
Volume: 5 ml non-characteristic
----------------------------------------------------------------
Color: blue non-characteristic
----------------------------------------------------------------
State: liquid characteristic
------------------------------------------------------------
density: 1.2 g/cm characteristic
------------------------------------------------------------
Reaction: reacts with CO2 characteristic
----------------------------------------------------------
The answer would be 1,3,1,3
<u>Answer:</u> The product side must be 
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive metal displaces a less reactive metal from its chemical reaction.

Metal C is more reactive than metal A.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This also means that total number of individual atoms on reactant side must be equal to the total number of individual atoms on the product side.
When zinc metal reacts with hydrochloric acid, it leads to the production of zinc chloride and hydrogen gas. The chemical reaction follows:

<u>On reactant side:</u>
Number of zinc atoms = 1
Number of hydrogen atoms = 2
Number of chlorine atoms = 2
<u>On product side:</u>
Number of zinc atoms = 1
Number of hydrogen atoms = 2
Number of chlorine atoms = 2
Hence, the product side must be 