I’m pretty sure it’s indictment
Answer: 0.07868 mol H₂O
Explanation:
1) Chemical equation:
Cu₂O +H₂ → 2Cu + H₂O
2) mole ratios:
1 mol Cu₂O : 1 mol H₂ : 2 mol Cu : 1 mol H₂O
3) Convert 10.00 g of Cu to grams, using the atomic mass:
Atomic mass of Cu: 63.546 g/mol
number of moles = mass in grams / atomic mass = 10.00g / 63.546 g/mol
number of moles = 0.1574 mol
4) Use proportions
2mol Cu 0.1574 mol Cu
--------------- = ---------------------
1 mol H₂O x
⇒ x = 0.1574 mol Cu × 1 mol H₂O / 2mol Cu = 0.07868 mol H₂O
That is the answer
It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!
Unlikely. It's unlikely for ammonium ion
to accept a proton
and act as a Bronsted-Lowry Acid.
<h3>Explanation</h3>
What's the definition of Bronsted-Lowry acids and bases?
- Bronsted-Lowry Acid: a species that can donate one or more protons
in a reaction.
- Bronsted-Lowry Base: a species that can accept one or more protons

Ammonium ions
are positive. Protons
are also positive.
Positive charges repel each other, which means that it will be difficult for
to accept any additional protons. As a result, it's unlikely that
will accept <em>any</em> proton and act like a Bronsted-Lowry Base.
Answer:
When she rubs her hands together, it causes heat or friction