1 hectopascal (hPa) is equivalent to 100 Pa
Answer:
the answer should be a constant
hope this helps!!
Answer:
D. It is easy to copy.
Explanation:
It is not B, or A, nor C.
Answer:
<h2><em>
6000 counts per second</em></h2>
Explanation:
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;
2000 counts per second = 1 meter ... 1
In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;
x count per second = 3 meter ... 2
Solving the two expressions simultaneously for x we will have;
2000 counts per second = 1 meter
x counts per second = 3 meter
Cross multiply to get x
2000 * 3 = 1* x
6000 = x
<em></em>
<em>This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample</em>
Answer:
a)P₂ =4 bar
b)W= - 1482.48 KJ
It means that work done on the system.
c)S₂ - S₁ = 3.42 KJ/K
Explanation:
Given that
T₁ = 300 K ,V₁ = 3 m³ ,P₁=2 bar
T₂ = 600 K ,V₂=V₁ 3 m³
Given that tank is rigid and insulated.It means that volume of the gas will remain constant.
Lets take the final pressure = P₂
For ideal gas P V = m R T



P₂ =4 bar
Internal energy
ΔU = m Cv ΔT
Cv=0.71 KJ/kg.k for air


m= 6.96 kg
ΔU= 6.96 x 0.71 x (600 - 300)
ΔU=1482.48 KJ
From first law
Q= ΔU + W
Q= 0 Insulated
W = - ΔU
W= - 1482.48 KJ
It means that work done on the system.
Change in the entropy


S₂ - S₁ = 3.42 KJ/K