<span>Thermocline is a layer between
warm water from the ocean’s surface and cool water from below the ocean. In here,
the temperature decreases rapidly from the warmer layer to the colder layer. A thermocline forms due to the heat of the sun
heating the ocean’s surface. Because of the difference in density between warm
and cooler ocean water, cooler ocean water sinks and warmer ocean water floats.
This is caused due to the heat and mass transfer between particles of the
ocean. The answer is letter C. The sun’s radiation does not extend below a
certain depth; therefore, deeper ocean water is colder than surface water.</span>
Answer:
X-rays go all the way through the body, but ultraviolet rays do not.
Explanation:
An x-ray will show inside the body, but uv light isn't strong enough to go all the way through the body.
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
Hi there!
We can begin by solving for the linear acceleration as we are given sufficient values to do so.
We can use the following equation:
vf = vi + at
Plug in given values:
4 = 9.7 + 4.4a
Solve for a:
a = -1.295 m/s²
We can use the following equation to convert from linear to angular acceleration:
a = αr
a/r = α
Thus:
-1.295/0.61 = -2.124 rad/sec² ⇒ 2.124 rad/sec² since counterclockwise is positive.
Now, we can find the angular displacement using the following:
θ = ωit + 1/2αt²
We must convert the initial velocity of the tire (9.7 m/s) to angular velocity:
v = ωr
v/r = ω
9.7/0.61 = 15.9 rad/sec
Plug into the equation:
θ = 15.9(4.4) + 1/2(2.124)(4.4²) = 20.56 rad
Answer:
454,320 joules
Explanation:
The work done on an object is equal to its change in kinetic energy: Change in KE = F × d.
Plug the values for F and d into the formula and solve:
Change in KE = 2,524 × 180
= 454,320 joules
The roller coaster gains 454,320 joules of energy from the work done on it by the chain.