Answer:
Explanation:
Given that,
Force applied to pedal F = 50N
Angular velocity ω = 10rev/s
We know that, 1rev = 2πrad
Then, ω = 10rev/s = 10×2π rad/s
ω = 20π rad/s
Length of pedal r = 30cm = 0.3m
Power?
Power is given as
P = τ×ω
We need to find the torque τ
τ = r × F
Since r is perpendicular to F
Then, τ = 0.3 × 50
τ = 15 Nm
Then,
P = τ×ω
P = 15 × 20π
P = 942.48 Watts
power delivered to the bicycle by the athlete is 942.48 W
<span>If your options are:
A.Both momentum and kinetic energy are vector quantities.
B.Momentum is a vector quantity and kinetic energy is a scalar quantity.
C.Kinetic energy is a vector quantity and momentum is a scalar quantity.
D.Both momentum and kinetic energy are scalar quantities.
</span>
The answer on the question given is letter B.<span>Momentum is a vector quantity and kinetic energy is a scalar quantity.</span>
Answer:
-75 cm
Explanation:
At l ; F = 350 Hz
At l + 15 cm ; F = 280 Hz
I = 350
I + 15 = 280
280I = 350(I + 15)
280I = 350I + 5250
280I - 350I = 5250
-70I = 5250
I = - 75cm
The length is - 75 cm
Explanation:
It is given that,
Mass of golf club, m₁ = 210 g = 0.21 kg
Initial velocity of golf club, u₁ = 56 m/s
Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg
After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.
Initial momentum of golf ball, 
After the collision, final momentum 
Using the conservation of momentum as :


v = 63.91 m/s
So, the speed of the golf ball just after impact is 63.91 m/s. Hence, this is the required solution.