Answer:
Therefore, light travelling at 3.0x10^8 meters per second takes 500 seconds (8 minutes, 20 seconds) to reach the Earth, which is 1.5x10^11 meters away from the sun
Explanation:
Here are the answers to the question. Make sure to give a valid reason, please.
A. the sum of the protons and neutrons in one atom of the element.
B. a ratio based on the mass of a carbon-12 atom.
C. a weighted average of the masses of an element's isotopes.
D. twice the number of protons in one atom of the element.
Answer:

between the plates.
Explanation:
The equation for change of voltage between two points separated a distance d inside parallel conducting plates (<em>which have between them constant electric field</em>) is:

So to calculate our electric field strength we use the fact that the potential 8.8 cm from the zero volt plate is 475 V:

And we use the fact that the plates are 9.2cm apart to calculate the voltage between them:

Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.